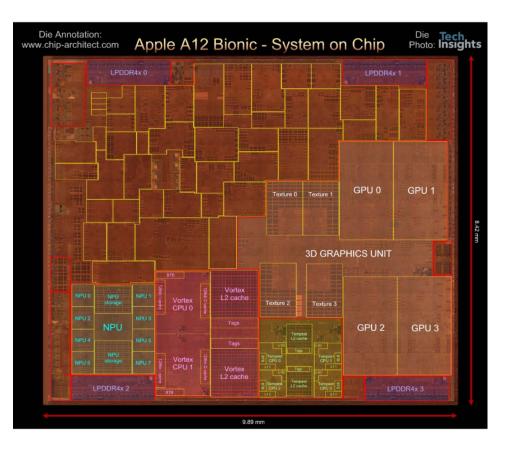
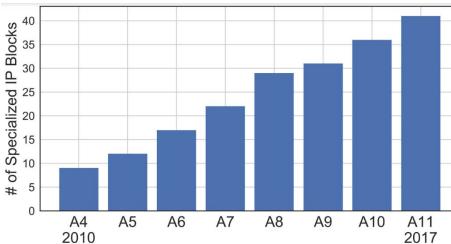
Systems 2030: The Extended Reality Case


Sarita Adve


University of Illinois at Urbana-Champaign sadve@illinois.edu

w/ many collaborators acknowledged on slides

This work is supported in part by DARPA, NSF, and the Applications Driving Architecture (ADA) Research center (JUMP center co-sponsored by SRC & DARPA)

Era of Specialization

Source: Brooks, Wei group, http://vlsiarch.eecs.harvard.edu/ accelerators/die-photo-analysis

Explosion of accelerators in SoCs (System-on-Chip)

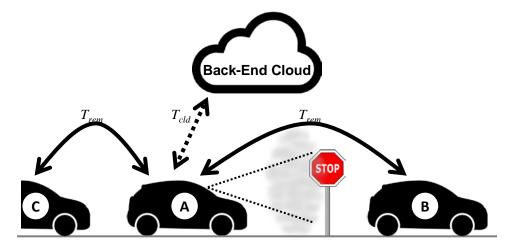
How to design specialized accelerators?

How to design specialized system?

Communication?

Software?

Applications?


Rise of the Edge

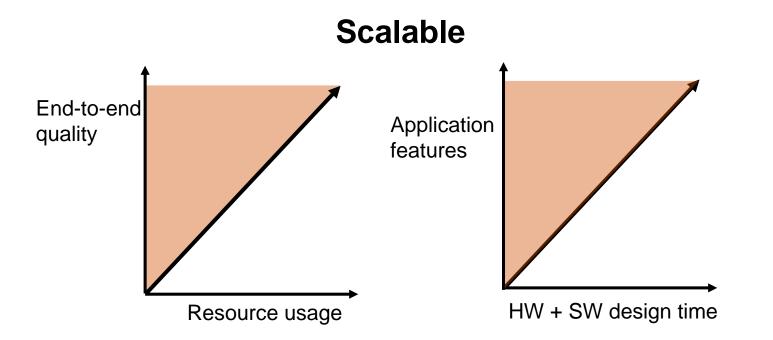
VR@Illinois

Chowdhari et al., EarthSense robots



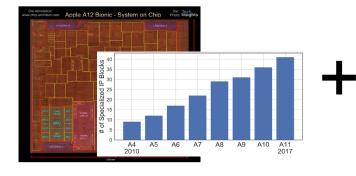
EPOCHS project, IBM, Columbia, Harvard, Illinois

Challenging performance demands Stringent resource constraints End-to-end quality metrics



Scalable,

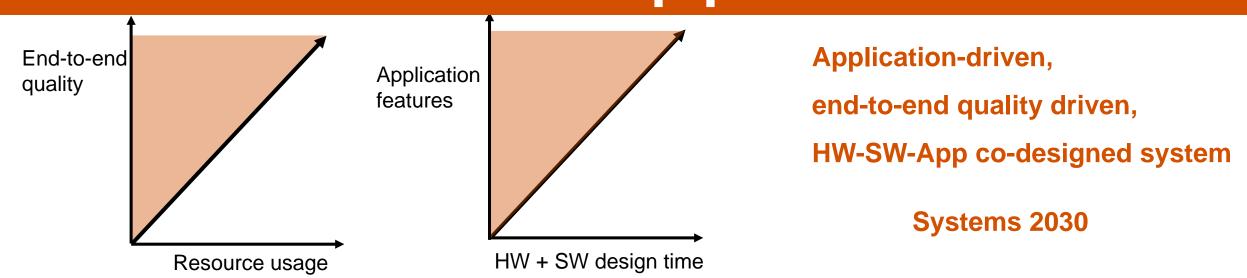
Generalizable Specialization Techniques



Generalizable

Application-driven, end-to-end quality driven, HW-SW-App co-designed system

Systems 2030



Scalable,

Generalizable Specialization Techniques

BUT What Application?

Systems 2030: The Extended Reality Case

Extended Reality (XR) = Virtual, augmented, mixed, ... reality

Pervasive: Science, medicine, entertainment, education, ...

Challenging: Orders of magnitude power, performance, quality gap to reach ideal

Diverse: Involves graphics, vision, audio, video, robotics, optics, haptics, ...

Full stack: Challenges span hardware, compiler, OS, algorithm

Flexible: User-driven, end-to-end quality of experience (QoE) metrics

Great driver for research for Systems 2030

XR Requirements

	VR		AR	
	HTC Vive Pro	Ideal	HoloLens 2	Ideal
Resolution (Mpixels)	4.6	200	4.4	200
Field of view (degrees)	110	Full: 165x175 Stereo: 120x135	52 diagonal	Full: 165x175 Stereo: 120x135
Refresh rate (Hz)	90	90-144	120	90-144
Motion to photon lat (ms)	< 20	< 20	< 2	< 5
Power (W)	N/A (server)	1 - 2	> 7	0.1 - 0.2
Silicon area (mm2)	N/A (server)	100-200	> 173	< 100
Weight (g)	470	100-200	566	10s

Orders of magnitude gap in power, performance, area, weight, QoE

Challenges for XR Systems Research

• Needs expertise from many domains

- Closed interfaces
 - Recent: OpenXR opened application-runtime interface
- State-of-the-art closely guarded by industry

-No open-source benchmarks or systems

ILLIXR: Illinois Extended Reality Testbed [Huzaifa et al., '20]

- ILLIXR: First open-source full system XR testbed
- State-of-the-art XR components integrated with modular and extensible runtime
- OpenXR compatible
- Several QoE metrics
- Runs on desktops, embedded systems

Soon: Community Consortium

- Industry + academic partners
 - ARM, Facebook, Micron, NVIDIA, ...
- Standardize benchmarking, QoE metrics, ...

illixr.github.io

A new playground for systems 2030 and XR research

Team ILLIXR

- Rishi Desai
- Samuel Grayson
- Muhammad Huzaifa
- Xutao Jiang
- Ying Jing
- Jae Lee
- Fang Lu
- Yihan Pang

External Consultations

- Joseph Ravichandran
- Giordano Salvador
- Finn Sinclair
 - Boyuan Tian
 - Lauren Wagner
 - Henghzi Yuan
 - Jeffrey Zhang
- Wei Cui
- Aleksandra Faust
- Liang Gao
- Matt Horsnell
- Amit Jindal
- Steve LaValle
- Steve Lovegrove

- Andrew Maimone
- Vegard Oye
- Martin Persson
- Archontis Politis
- Eric Shaffer
- Paris Smaragdis
- Chris Widdowson

Team ILLIXR

- Rishi Desai
- Samuel Grayson
- Muhammad Huzaifa
- Xutao Jiang
- Ying Jing
- Jae Lee
- Fang Lu
- Yihan Pang

External Consultations

- Joseph Ravichandran
- Giordano Salvador
 - Finn Sinclair
- Boyuan Tian
- Lauren Wagner
- Henghzi Yuan
- Jeffrey Zhang
- Aleksandra Faust
- Liang Gao

• Wei Cui

faseph

- Matt Horsnell
- Amit Jindal
- Steve LaValle
- Steve Lovegrove

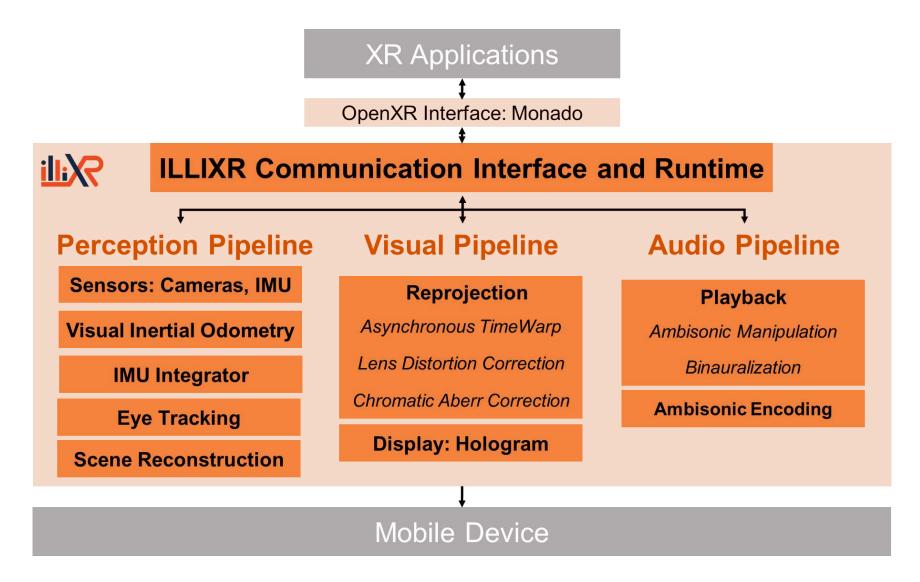
- Andrew Maimone
- Vegard Oye
- Martin Persson
- Archontis Politis
- Eric Shaffer
- Paris Smaragdis
- Chris Widdowson

Team ILLIXR

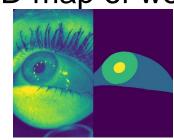
- Rishi Desai ullet
- Samuel Grayson Muhammad Huzaifa
 - Xutao Jiang
 - Ying Jing
 - Jae Lee
 - Fang Lu
 - Yihan Pang

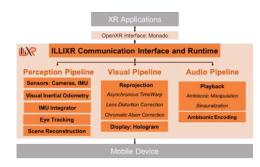
External Consultations

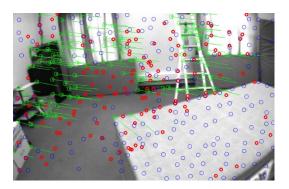
- Joseph Ravichandran
 - Giordano Salvador **Finn Sinclair**
- Boyuan Tian
- Lauren Wagner
- Henghzi Yuan
- Jeffrey Zhang
- Aleksandra Faust
- Liang Gao
- Matt Horsnell •
- Amit Jindal
- Steve LaValle
- Steve Lovegrove •



- vegaru Oye
- Martin Persson
- Archontis Politis
- Eric Shaffer
- Paris Smaragdis
- Chris Widdowson •

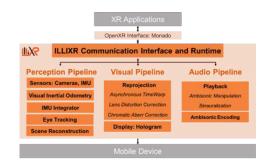

ILLIXR Overview

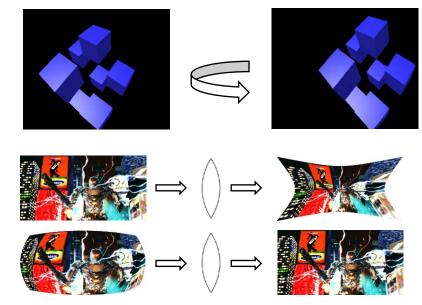




Perception Pipeline

- Sensors: Camera, Inertial Measurement Unit (IMU)
- Visual Intertial Odometry (VIO)
 - Provides position and orientation of user's head (pose)
- IMU Integrator
 - Provides high frequency pose estimates
- Pose Predictor
 - Extrapolates pose to future timestamp
- Scene Reconstruction
 - Uses RGB-Depth camera to build dense 3D map of world
- Eye Tracking

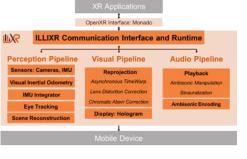



Visual Pipeline

- Asynchronous reprojection (TimeWarp)
 - Warp rendered frame to account for head movement during rendering
 - Uses latest pose estimate and prediction
 - Cuts motion-to-photon latency

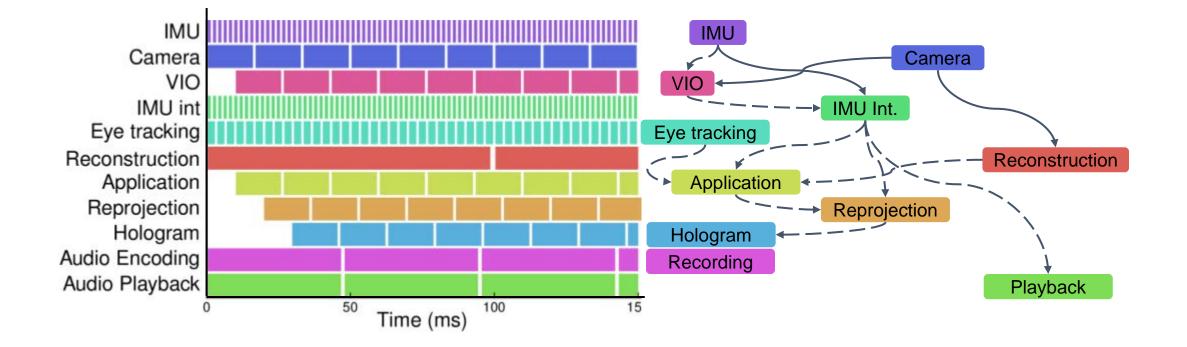
Lens distortion and chromatic aberration correction
 – Corrects for distortion due to curved lenses

- Adaptive display: hologram
 - Vergence-accommodation conflict (VAC) causes fatigue, headache
 - Eyes focused (accommodated) at fixed point, converge at different points
 - Computational displays w/ multiple focal planes can fix VAC
 - Computational holography: per-pixel phase shift



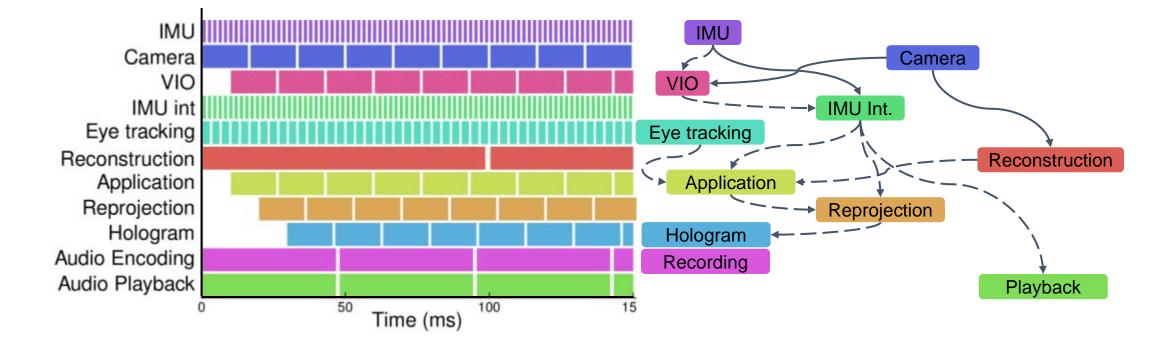
Audio Pipeline

- Audio encoding
 - Encodes multiple sound sources into Higher Order Ambisonics (HOA) soundfield
- Playback
 - Rotates and zooms HOA sound field for user's latest pose
 - Performs binauralization to account for user's ear, head, nose

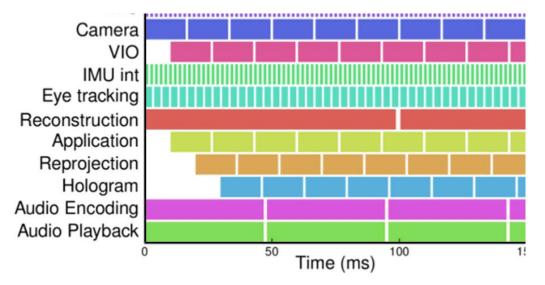


BUT XR is not just a collection of components

It is a SYSTEM

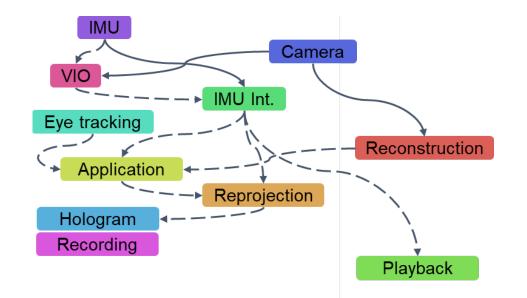


XR System Dataflow


XR System Dataflow

Different components at different frequencies Multiple interacting pipelines Synchronous and asynchronous dependences Multiple quality of experience metrics

ILLIXR Runtime

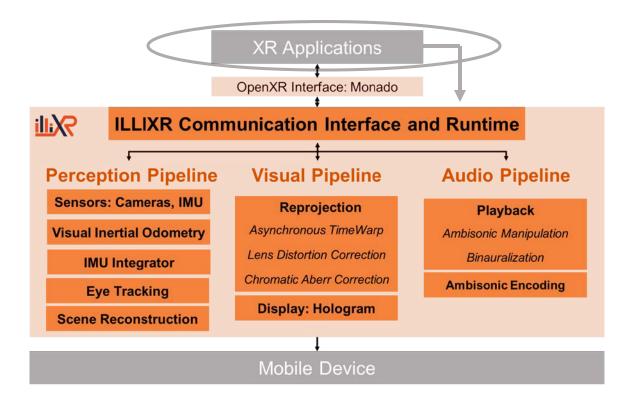


Modular, flexible architecture

ILLIXR components are plugins

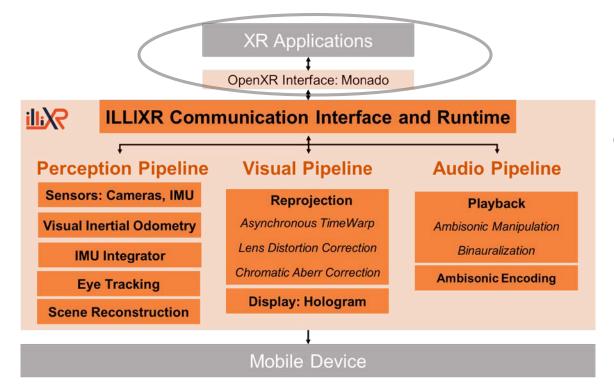
Separately compiled, dynamically loaded

Easily swap/add new components, implementations


Efficient, flexible communication interface

Component specifies event streams to publish, subscribe Synchronous or asynchronous consumers Copy-free, shared memory implementation

End-to-end system balances flexibility with efficiency


ILLIXR Applications

Can write XR applications directly to ILLIXR

ILLIXR Applications

Can write XR applications directly to ILLIXR

ILLIXR supports OpenXR applications

- Uses Monado implementation of OpenXR
- Today: Godot game engine with many apps
- Soon: Unity, Unreal, ...

End-to-End Quality Metrics

- Motion-to-photon latency
 - Time from head motion to display

- Image quality: SSIM and FLIP
- Pose: Average Trajectory Error and Relative Pose Error

+ Extensive telemetry: Frame rates, missed frames, time distributions, power, ...

ILLIXR Components Today

	Component	Algorithm	Implementation
B IMU Integ		ZED SDK Intel RealSense SDK	C++ C++
	-	ZED SDK Intel RealSense SDK	C++ C++
		OpenVINS Kimera-VIO	C++ C++
	IMU Integrator IMU Integrator	RK4 GTSAM	C++ C++
	Eye Tracking	RITnet	Python, CUDA
	Scene Reconstruction Scene Reconstruction	ElasticFusion KinectFusion	C++, CUDA, GLSL C++, CUDA
line	Reprojection	VP-matrix reproject w/ pose	C++, GLSL
bel	Lens Distortion	Mesh-based radial distortion	C++, GLSL
Visual Pipeline	Chromatic Aberration	Mesh-based radial distortion	C++, GLSL
	Adaptive Display	Weighted Gerchberg-Saxton	CUDA
Audio Pipeline	Audio Encoding	Ambisonic encoding	C++
	Audio Playback	Ambisonic manipulation, binauralization	C++

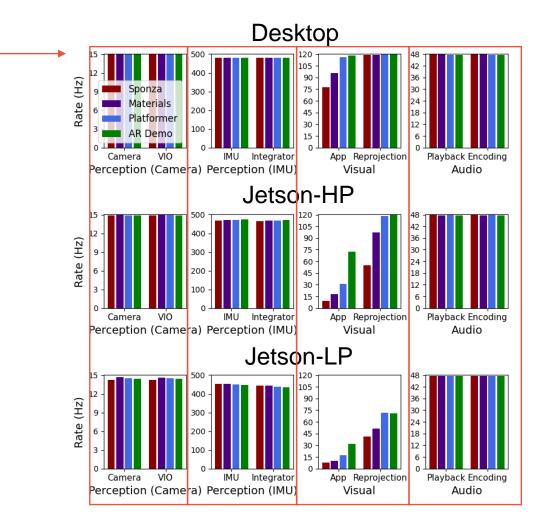
Evaluation Methodology

Component	Parameter	Range	Tuned	Deadline
Camera (VIO)	Frame rate Resolution Exposure	15 – 100 Hz VGA – 2K 0.2 – 20 ms	15 Hz VGA 1 ms	66.7 ms
IMU (Integrator)	Frame rate	≤ 800 Hz	500 Hz	2 ms
Display (Visual pipeline + Application)	Frame rate Resolution Field-of-view	30 – 144 Hz ≤ 2K ≤ 180°	120 Hz 2K 90°	8.33 ms – –
Audio (Encoding + Playback)	Frame rate Block size	48 – 96 Hz 256 – 1024	48 Hz 1024	20.8 ms –

- Platforms
 - High-end desktop machine

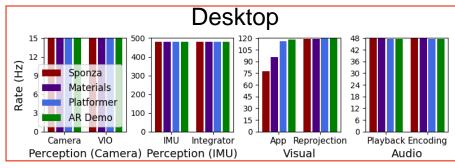
High

- Embedded: NVIDIA Jetson-HP (high performance) and Jetson-LP (low power)

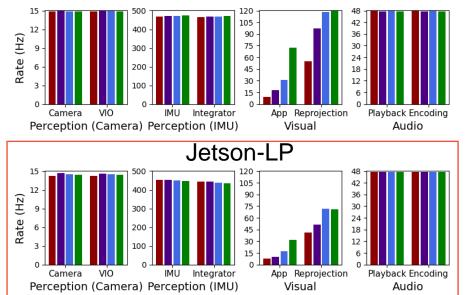

Low

• Applications: Sponza, Materials, Platformer, AR Demo on Godot game engine

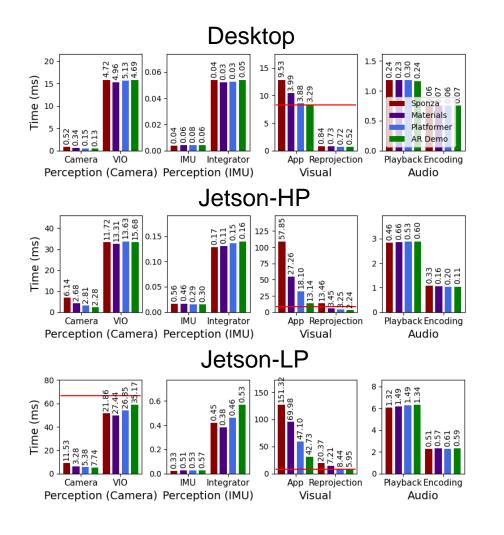
Graphics intensity

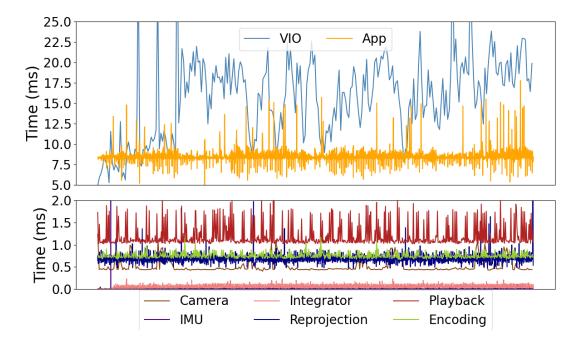


Frame Rate

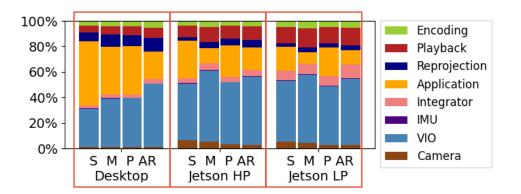


Frame Rate


Jetson-HP

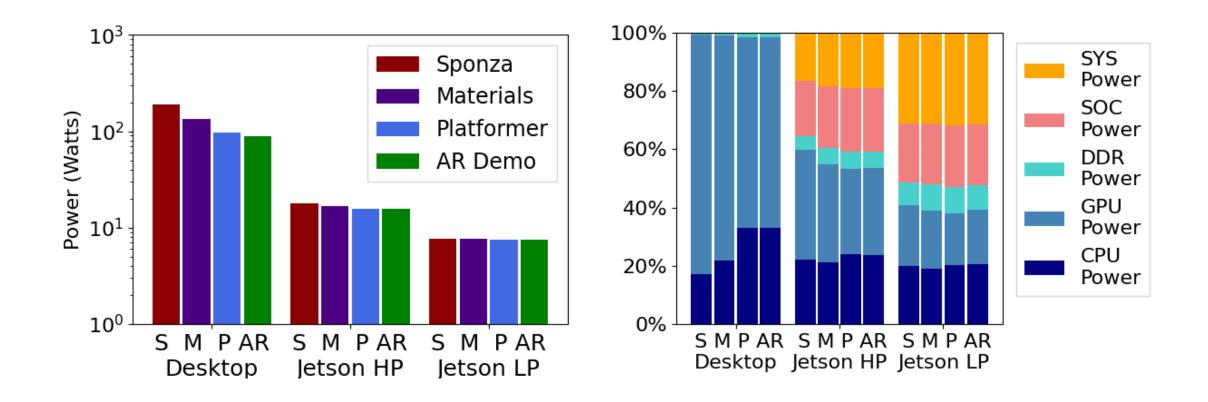


- Desktop meets performance
 - -But at what power cost?
- Jetson-LP can run only audio at target fps
- Gap will increase as displays and components scale


Time Per Frame

Input-dependence, scheduling, and resource contention lead to significant variability

Distribution of Cycles

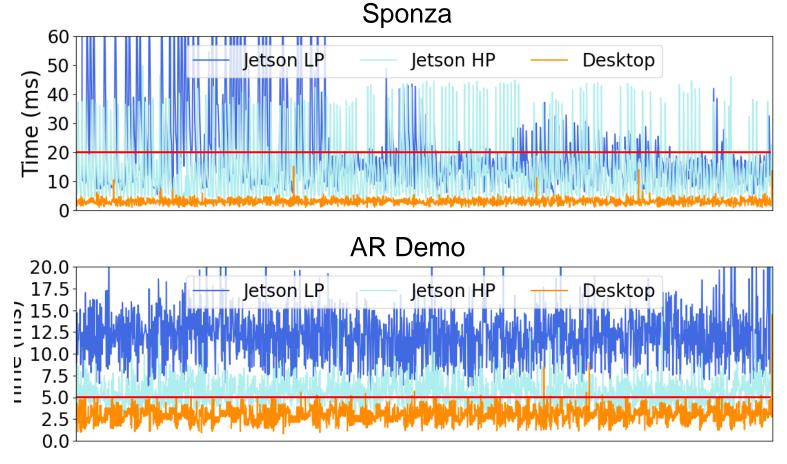


- Application and VIO dominate
- Reprojection and integrator take little time, but critical for QoE

• All components and metrics must be considered together

Power

Must consider system-level components such as display and I/O



Motion-to-Photon Latency

Application	Desktop	Jetson-hp	Jetson-lp
Sponza	3.1 ± 1.1	13.5 ± 10.7	19.3 ± 14.5
Materials	3.1 ± 1.0	7.7 ± 2.7	16.4 ± 4.9
Platformer	3.0 ± 0.9	6.0 ± 1.9	11.3 ± 4.7
AR Demo	3.0 ± 0.9	5.6 ± 1.4	12.0 ± 3.4

Motion-to-Photon Latency

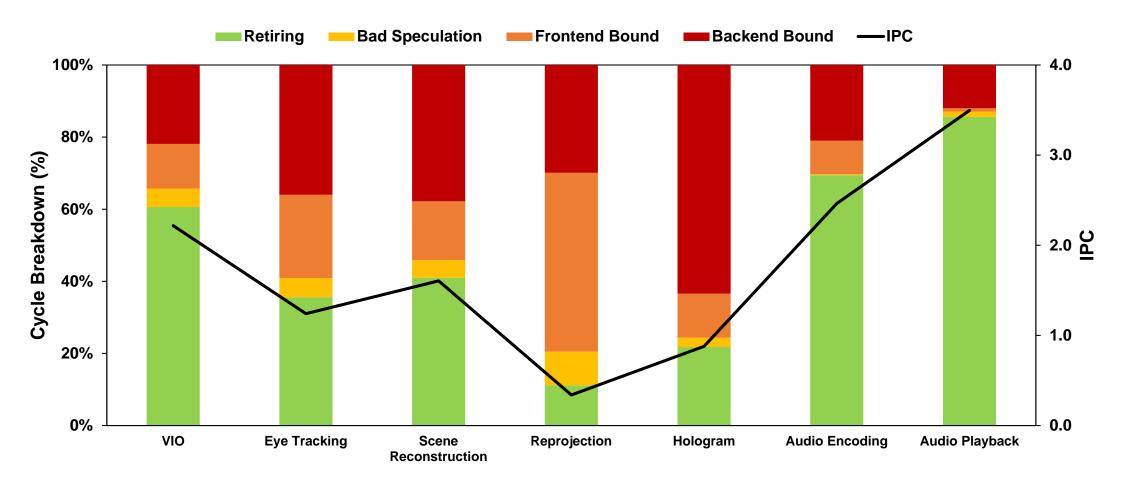


Extremely unpleasant experience on Jetson

Image Quality

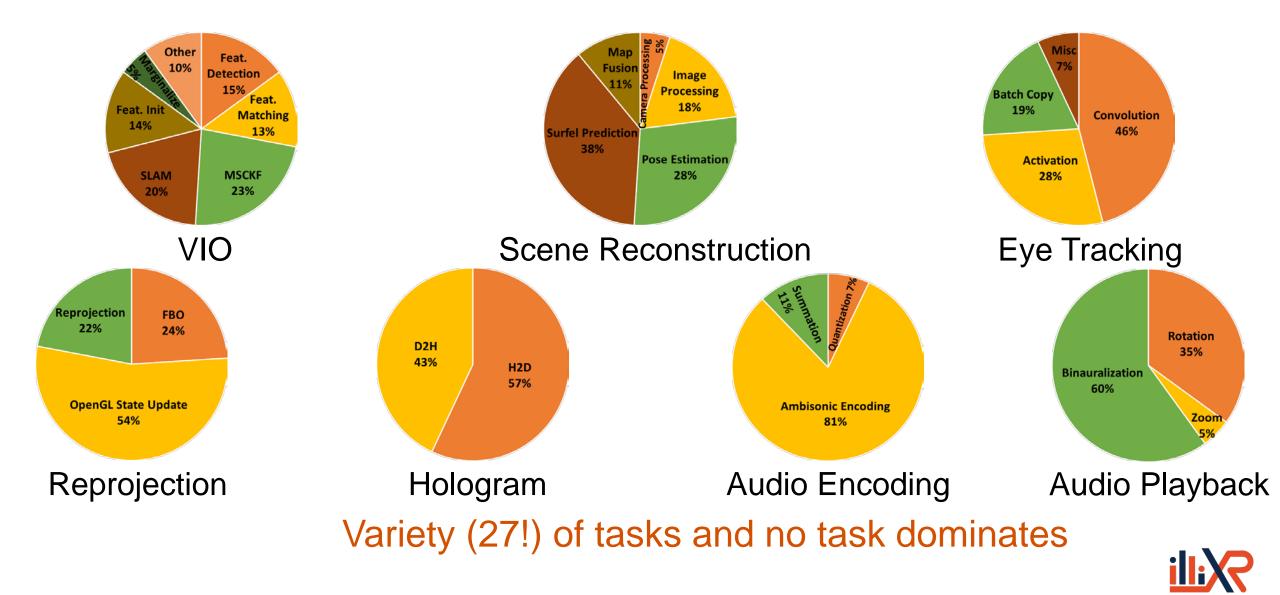
Platform	SSIM	1-FLIP	ATE/degree	ATE/meters
Desktop	0.83 ± 0.04	0.86 ± 0.05	8.6 ± 6.2	0.33 ± 0.15
Jetson-hp	0.80 ± 0.05	0.85 ± 0.05	18 ± 13	0.70 ± 0.33
Jetson-lp	0.68 ± 0.09	0.65 ± 0.17	138 ± 26	13 ± 10

Must consider end-to-end QoE Need better QoE metrics



Implications for Architects

- Substantial performance, power, QoE gap
 - \Rightarrow Need to specialize hardware, software, system
- No application component dominates all metrics
 - ⇒ Must consider all application components in system together
- Power consumption goes beyond CPU, GPU, DDR
 - \Rightarrow Must consider *system*-level hardware components; e.g., display and I/O
- Significant variability
 - \Rightarrow Need to partition, allocate, and schedule system resources
- Per-component metrics do not capture QoE
 - ⇒ Must look at entire *system* to make QoE-driven tradeoffs


Component Microarchitectural Diversity

Wide range in IPC and hardware utilization

Task Diversity

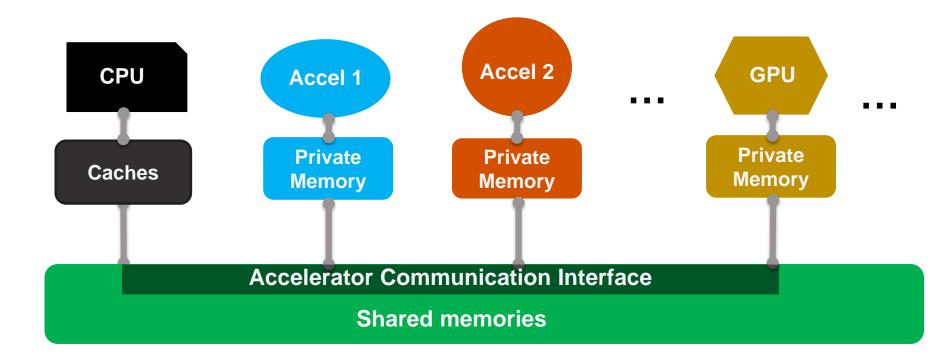
Component Deep Dive

Task	Time	Computation	Memory Pattern
Feature detection Detects new features in the new camera images	15%	Integer stencil, once per pyramid level	Subtask 1: Globally dense, local Bresenham stencil Subtask 2: Globally sparse feature accesses, locally dense stencil
Feature matching Matches features across images	13%	Integer stencil; GEMM; RANSAC; linear algebra	Subtask 1: Globally sparse, locally dense pixel accesses Subtask 2: dense feature map accesses Subtask 3: random feature map accesses
Filter Estimates 6DOF pose using camera and IMU measurements	62%	Gauss-Newton refinement; QR decomposition; GEMM; linear algebra	Mixed dense and sparse feature map and filter matrix accesses
Other Miscellaneous tasks	10%	Gaussian filter; histogram	Globally dense stencil

Component Deep Dive

Task	Time	Computa	ation	\mathbf{Me}	mory Patter	n	
Feature detection Detects new features in the new camera images		Integer st pyramid l	encils per each evel		ally dense sten se and sparse	cil; globally mixed	
Feature matching Matches features across images	13%	Integer ste linear alge	encils; GEMM; ebra	den		cil; globally mixed mixed dense and ap accesses	
Filter Estimates 6DOF pose using camera and IMU measurements	62%		wton refinement; nposition; GEMM; ebra		ed dense and s filter matrix a	sparse feature map accesses	
Other Miscellaneous tasks			filter; histogram	Glo	bally dense ste	encil	
Task	Tin	ie Com	outation		Memory F	Pattern	
FBO FBO state management	24%	Frame	buffer bind and cle	ar	Driver calls; communicat		
OpenGL State Update Sets up OpenGL state	54%	1	GL state updates; o all per eye	ne	Driver calls; communicat		_
Reprojection Applies reprojection transformation to image	22%		rix-vector /vertex			iform, vertex, and iffers; 3 texture gment	
Task		Time	Computation	ı		Memory Pattern	
Hologram-to-depth Propagates pixel phase depth plane	to	57%	Transcendental TB-wide tree r	·		Dense row-major; spa pixel data; temporal data; reduction in scr	locality in depth
Sum Sums phase differ from hologram-to-depth		< 0.1%	Tree reduction			Dense row-major; red scratchpad	uction in
Depth-to-hologram Propagates depth plane phase to pixel	e	43%	Transcendenta thread-local re		,	Dense row-major; no pixels written once	pixel reads;

Task	Time	Computati	on		Memo	ry Pattern	
Camera Processing Processes incoming camera depth image	5%	Bilateral filt rejection	er; invali	id depth	Dense s image	sequential accesses	to depth
Image Processing Pre-processes RGB-D image for tracking and mapping	18%	1,		Globall change RR_GC	:il; layout →		
Pose Estimation Estimates 6DOF pose	28%	ICP; photometric error; geometric error		Photon others dense	lly dense; locally		
Surfel Prediction Calculates active surfels in current frame	38%	Vertex and f	ragment	shaders	Globall	y sparse; locally de	nse
Map Fusion Updates map with new surfel information	11%	Vertex and f	ragment	shaders	Globall	y sparse; locally de	nse
Task		Time Co	mput	ation		Memory	y Pattern
Normalization INT16 to FP32		7% Ele	ement-v	wise FP3	2 divis	ion Dense ro	w-major
Encoding Sample to soundfield mapping		81% Y[j][i] = 1	D imes X[j]]	Dense co	lumn-major
Summation HOA soundfield summati	ion	11% Y[i][j]+ =	$=X_k[i][j]$	$] \forall k$	Dense ro	w-major
	R	ask lotation bundfield rotation sing pose	Time 35%	Sub-task Psychoacc filter Applies f domain filt HOA rota Rotates virt nels	requency- er ation	Computation FFT; frequency do- main convolution; IFFT Transcendentals; FMADDs	Memory Pattern Butterfly pattern for FFT/IFFT; dense row-majo sequential accesses for convolution Sparse column-major accesses; some temporal locality
	S	oom oundfield zoon sing pose	5% 1	-		Linear algebra	Dense column-major sequential accesses
		inauralization RTF application	60%	_		Identical to psychoa- coustic filter	Identical to psychoacousti filter


Implications for Architects

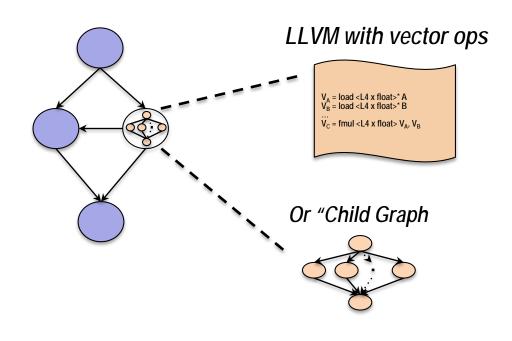
- Need to specialize hardware, software, system
- Must consider all application components in system together
- Must consider system-level hardware components; e.g., display and I/O
- Need to partition, allocate, and schedule *system* resources
- Must look at entire system to make QoE-driven tradeoffs
- Abundance of tasks and no single task dominates
 - ⇒ Need *automated* techniques to determine what to accelerate
- Impractical to build accelerator for every task
 - \Rightarrow Must build *shared* hardware
- Diversity of compute and memory primitives
 - \Rightarrow *Flexible* on-chip memory hierarchy
 - \Rightarrow *Flexible* accelerator communication interface
- Algorithms in flux
 - \Rightarrow Must design *programmable* hardware
- Different algorithms have different QoE vs. resource usage profiles

⇒End-to-end QoE driven approximate computing

ILLIXR = Rich playground for Systems 2030 research

Accelerator Communication Interface

- How should heterogeneous parallel accelerators communicate with each other?
- Programmable, shared hardware \Rightarrow shared memory
 - Coherence, consistency, communication
 - Build on Spandex heterogeneous coherence interface for coherence specialization [ISCA18, in review]



Representing Heterogeneous Parallelism in Software

w/ V. Adve and S. Misailovic

HPVM: Heterogeneous Parallel Virtual Machine [PPoPP18, OOPSLA19, PPOPP21]

Compiler IR and Hardware Virtual ISA

Model: Hierarchical dataflow graph with side effects

Captures

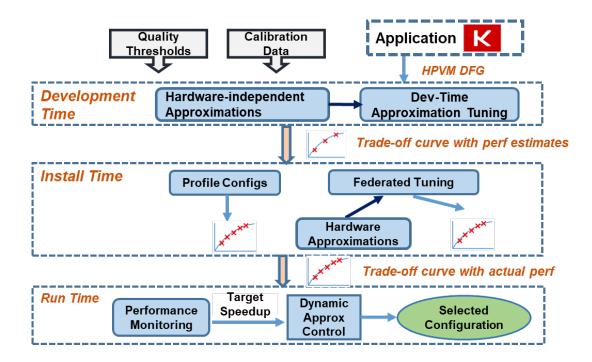
- coarse grain task parallelism
- streams, pipelined parallelism
- nested parallelism
- SPMD-style data parallelism
- fine grain vector parallelism

Supports high-level optimizations as graph transformations

Targets: CPUs, vector extensions, GPUs, FPGAs, domain specific accelerators

Representing ILLIXR in HPVM

For code generation, automated accelerator selection, approximation, resource mapping, ...



Automated Approximation Selection

w/ V. Adve and S. Misailovic

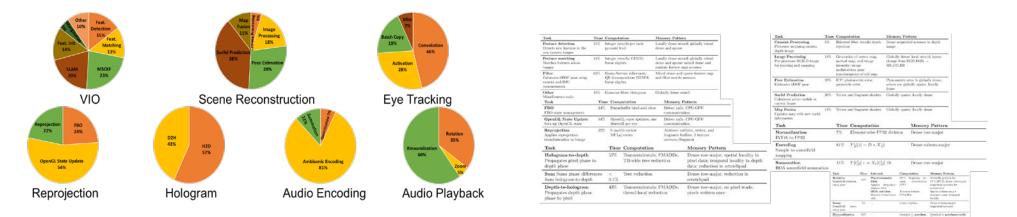
ApproxTuner [PPoPP21]

Combines multiple software and hardware approximations for tensor operations

Uses predictive models to compose accuracy impact of multiple approximations

3-phase approximation tuning

- Development-time preserves hardware portability via ApproxHPVM IR
- Install-time allows hardware-specific approximations
- Run-time allows dynamic approximation tuning


Approximations for ILLIXR

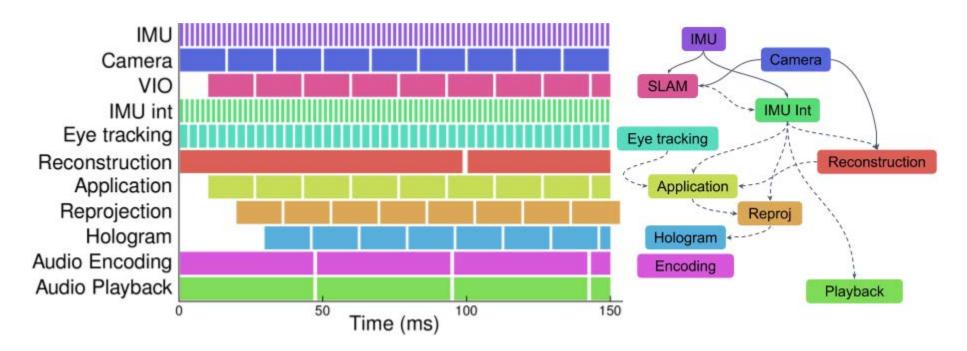
Build on ApproxTuner for QoE-driven automated selection

Automated Selection, Generation of Accelerator HW & SW

w/ V. Adve, D. Brooks, V. Reddi, G.-Y. Wei

Manual identification of common compute, memory patterns

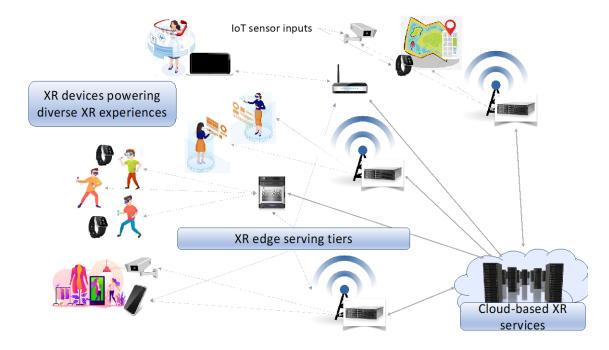
 \Rightarrow Cross-component co-design allows hardware, computation, and data reuse w/ large benefits


Goal: Automated design space exploration to identify profitable acceleration, generate HW+SW

- Use HPVM's parallelism and communication representation
- Compiler analysis and transformations for common patterns and optimizations

QoE-Driven Scheduling

w/ P. B. Godfrey, R. Mittal


ILLIXR task graph is a DAG with multiple critical paths and QoE constraints

Scheduler goal: Determine frame rates and schedule to meet QoE for given hardware mapping Future: Multiple hardware targets for given task, hardware and software approximations

From Single-Device to Distributed Systems

w/A. Gavrilovska, K. Nahrstedt

- Offload computation to edge, cloud servers
- Content streaming
- Multiparty AR/VR experiences

More Use Cases

- Security and Privacy
- 360 Video streaming
- Multiparty AR programming stack
- Displays
- On-sensor computing
- QoE metrics
- XR algorithms
- ...

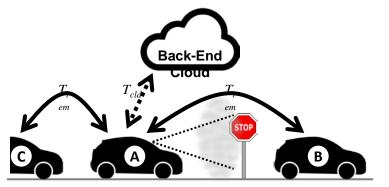
ILLIXR Testbed

- New components: translational reprojection (spacewarp), hand tracking, ...
- Add North Star head set
- Broaden hardware/software platforms supported
- Create and curate data sets and applications
- Incorporate research results

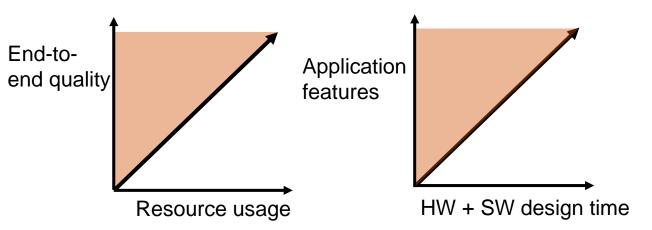
Soon: Community Consortium

- Industry + academic partners
 - ARM, Facebook, Micron, NVIDIA, ...
- Standardize benchmarking, QoE metrics, ...

illixr.github.io



VR@Illinois


Chowdhari et al., EarthSense robots

EPOCHS project, IBM, Columbia, Harvard, Illinois

Challenging perf demands. Stringent resource constraints. End-to-end quality metrics.

ILLIXR is a rich playground for research for Systems 2030

Scalable & Generalizable Specialization

Application-driven,

end-to-end quality driven,

HW-SW-App co-designed

system specialization techniques

illixr.github.io

Team ILLIXR

- Rishi Desai
- Samuel Grayson
- Muhammad Huzaifa
- Xutao Jiang
- Ying Jing
- Jae Lee
- Fang Lu
- Yihan Pang

- Joseph Ravichandran
- Giordano Salvador
- a Finn Sinclair
 - Boyuan Tian
 - Lauren Wagner
 - Henghzi Yuan
 - Jeffrey Zhang

- Spandex team: Johnathan Alsop, Robert Jin, Weon Tak Na, Matthew Sinclair, Zeran Zhu
- HPVM team: Vikram Adve, Adel Ejjeh, Muhammad Huzaifa, Keyur Joshi, Rakesh Komuravelli, Maria Kotsifakou, Akash Kothari, Sasa Misailovic, Yasmin Sarita, Ben Schreiber, Hashim Sharif, Matthew Sinclair, Prakalp Srivastava, Elizabeth Wang, Yifan Zhao, Nathan Zhao

Some Life Stories and Lessons

- ILLIXR story
 - Born out of frustration and desire to impact something real
 - Had no clue about XR except that my colleague Steve Lavalle had recently returned from a successful stint as founding chief scientist at Oculus ©
 - − CFAR seed proposal (1 page) + Encouraging colleague + Excited student ⇒
 Detour became main research thrust w/ many students, faculty, and industry collaborators
 - 3+ years of work, real impact still to come, but already satisfying
- Memory models story
 - Frustration with HW memory models, called on SW community to fix
 - Joined Java memory model effort didn't know Java or PL-ese, no students, no funding
 - 5 years of work, 1 paper, but real impact
- SIGARCH chair story
 - Colleagues gathered frustrating data on diversity in architecture community
 - Joined hands with colleagues for intense activism, concrete actions
 - ~3 years of work, no papers, but real impact; e.g., CARES movement

Some Life Stories and Lessons

- Follow your passion
- Take risks. Believe in yourself.
- Impact = Change minds. Takes time and hard work. (!= # Papers)
- It takes a village. Pay it forward.

